What are the advantages of graphite electrodes?

02 Jul.,2024

 

Why is graphite used for electrodes? - MWI, Inc.


Electrodes can be made from any conductive material. Depending on the nature of the application, electrodes are typically from graphite. Noble metals like gold, silver or platinum can be used but are very expensive. Copper, titanium and brass are other options, but they are also costly.

Contact us to discuss your requirements of high bulk density graphite electrode. Our experienced sales team can help you identify the options that best suit your needs.

Graphite is used as an electrode material because it is a good conductor of electricity, is chemically stable, and can withstand high temperatures. It also has a low reactivity and thermal expansion coefficient, making it suitable for electrode use in electrochemical cells.

Graphite is a Good Conductor of Electricity

Graphite&#;s unique structure, with layers of carbon atoms arranged in hexagonal, allows the electrons to move freely, making it a good conductor of electricity and useful as an electrode material.

In graphite, the carbon atoms are arranged in layers, retaining their structure through covalent bonds. A significant feature of graphite&#;s structure is the number of delocalized electrons present. Graphite requires only three of its outer energy electrons to bond, leaving the fourth free to act in a delocalized manner. Delocalized electrons are not readily associated with a particular atom and move freely. These electrons enable graphite to exhibit a high level of conductivity, explaining why the material is frequently used for electrodes.

Graphite Electrode Materials

Check out MWI&#;s EDM Graphite Product Guide that contains information for our Electro-Carb &#;EC&#; family of graphite electrode materials. Graphite grades include EC-4, EC-12, EC-14, EC-15, EC-15C. EC-16, EC-17, HK-6, and HK-6C.

Graphite Electrode Uses and Advantages

Graphite Electrode Soldering Iron


Graphite electrode is nothing more than a sharp graphite rod, taken from a pile, subject to a support conductor of the current, copper tube, and at a reasonable distance a plastic handle, PVC tube. The handle should be far enough away so that it does not reach so much heat to soften it. Anyway it is clear that PVC is the worst plastic that can be used for this but it was there.


This is a sheet metal welder for almost any metal. It does not require input of material and practically does not admit it unless they are very thin rods. It is not about electric arc welding. What melts the metal is the graphite tip that shortly turns to bright white. What is heated by the current is graphite, not metal, Graphite electrode because the first one has a much greater resistance and dissipates most of the power. It is important that the graphite tip is sharp for two reasons:


The finer the point of contact between the material and the tip more resistance to current and more temperature reach. If it is too thick, heat is transmitted easily from the tip to the soldering iron and a large part of it dissipates without reaching the necessary temperature. The soldering iron only works if it concentrates most of the power at the point to be soldered. Everything has to be thought for that.


The truth is that to have been done in 10 minutes, nothing else came up with the idea, it was pretty good. The way to hold the Graphite electrode was the idea of a friend and is interesting for its simplicity. It involves making two cuts on the edge of the tube longitudinally dividing it into 4 more or less equal parts. Two of them are eliminated and the tube is left with two tabs. Each one is tightened with pliers to give it a round shape and it adapts to the bar and then approaches each other. You are looking for a large brass nut that snaps into place and, without the rod; you turn the nut with force, making a thread in the copper. Then open, put the bar and do the same again and is perfectly subject. This system allows changing the bar quickly, adjusting its position, and providing a good electrical contact.


Graphite electrode is mainly used in electric arc furnace. They are presently the only products available that have the high levels of electrical conductivity and the capability of sustaining the extremely high levels of heat generated in EAF. Graphite electrodes are also used to refine steel in ladle furnaces and in other smelting processes. Graphite electrodes are divided into 4 Types: RP Graphite electrodes, HP Graphite electrodes, SHP Graphite electrodes, UHP Graphite electrodes.


Diameter and length for all grades:

Diameter mm

Length mm

Nominal Diameter

Actual Diameter

Nominal Length

Allowance

mm

inch

Max

Min

mm

Standard

Short

200

8

205

200

± 100

-275

250

10

256

251

300

12

307

302

/

350

14

357

352

/

400

16

409

403

/

450

18

460

454

/

500

20

511

505

/

550

22

562

556

/

600

24

613

607

/

650

26

663

657

/

700

28

714

708

/



Machining Dimension of Electrode and Nipple&#;

Applicable

Dia.

mm

IEC code

Nipple

Socket

Large Dia.

mm

Length

mm

Small Dia.

mm

Socket Depth

mm

UHP

SHP

HP

RP

250

155T3N

155.57

220.00

147.14

116.00

300

177T3N

177.16

270.90

168.73

141.50

350

215T3N

215.90

304.80

207.47

158.40

400

215T3N

215.90

304.80

207.47

158.40

400

241T3N

241.30

338.70

232.87

175.30

450

241T3N

241.30

338.70

232.87

The company is the world’s best how to make graphite block supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

175.30

450

273T3N

273.05

355.60

264.62

183.80

500

273T3N

273.05

355.60

264.62

183.80

500

298T3N

298.45

372.60

290.02

192.20

550

298T3N

298.45

372.60

290.02

192.20

UHP

SHP

HP

RP

200

122T4N

122.24

177.80

115.92

94.90

250

152T4N

152.40

190.50

146.08

101.30

300

177T4N

177.80

215.90

171.48

114.00

350

203T4N

203.20

254.00

196.88

133.00

400

222T4N

222.25

304.80

215.93

158.40

400

222T4L

222.25

355.60

215.93

183.80

450

241T4N

241.30

304.80

234.98

158.40

450

241T4L

241.30

355.60

234.98

183.80

500

269T4N

269.88

355.60

263.56

183.80

500

269T4L

269.88

457.20

263.56

234.60

550

298T4N

298.45

355.60

292.13

183.80

550

298T4L

298.45

457.20

292.13

234.60

600

317T4N

317.50

355.60

311.18

183.80

600

317T4L

317.50

457.20

311.18

234.60

650

355T4N

355.60

457.20

349.28

234.60

650

355T4L

355.60

558.8

349.28

285.40

700

374T4N

374.65

457.20

368.33

234.60

700

374T4L

374.65

558.80

368.33

285.40


Graphite electrodes uses

Graphite electrodes are used primarily in electric arc furnace steel manufacturing. Graphite electrodes can provide high levels of electrical conductivity and capability of sustaining the extremely high levels of generated heat. Graphite electrodes are also used in the refinement of steel and similar smelting processes.

1. The electrode holder should be held in the place beyond the security line of the top electrode; otherwise the electrode would be easily broken. The contact surface between the holder and the electrode should be cleaned up regularly to maintain a good contacting. The cooling jacket of the holder shall be avoided from water leakage.

2. Identify the reasons if there is gap in the electrode junction, do not use the muntil the gap is eliminated.
3. If there is falling off of nipple bolt when connecting electrodes, it is necessary to complete the nipple bolt.
4. The application of electrode should avoid of tilting operation, particularly, the group of connected electrodes should not be put horizontally so as to prevent from breaking.
5. When charging materials to the furnace, the bulk materials should be charged to the place of the furnace bottom, so as to minimize the impact of the large furnace materials on the electrodes.
6. The large pieces of insulation materials should be avoided of stacking on the bottom of the electrodes when smelting, so as to prevent from affecting the electrode use, or even broken.
7. Avoid of collapsing the furnace lid when rising or dropping the electrodes, which may result in electrode damage.
8. It is necessary to prevent the steel slag from splashing to the threads of the electrodes or nipple stored in the smelting site, which my damage the precision of the threads.

Are you interested in learning more about graphite crucibles in different sizes? Contact us today to secure an expert consultation!