What is the Advantage and Disadvantage of ceramic frac proppant factories

02 Sep.,2024

 

Proppants

Fig. 1 Sand proppant mixing into the fracturing fluid passing through a window screen

With competitive price and timely delivery, AnYiCheng sincerely hope to be your supplier and partner.

Fig. 2 Representation of proppant agents settling into the fractures

Fig. 3 Cost-efficiency &#;pyramid&#; of proppant types

Fig. 4 Sample of artificial glass proppant produced from waste bottles

Fig. 5 Samples of proppants with different density

Fig. 6 Multifunction ceramic proppants coated with bacterial biofilm

Fig. 7 Krumbein-Sloss chart

Fig. 8 Refiguration of proppant shapes

Fig. 9 Chart resuming the basic proppant selection factors

The original version of this article was created by Francesco Gerali, Elizabeth & Emerson Pugh Scholar in Residence at the IEEE History Center

It is recommended this article be cited as:

F. Gerali (). Proppants, Engineering and Technology History Wiki. [Online] Available: https://ethw.org/Proppants

Introduction

Hydraulic fracturing is the process of injecting fluids into oil or gas bearing formations at high rates and pressures to generate fractures in the rocks (Fig. 1). The task of proppants, or propping agents, is to provide and maintain long term efficient conduit for production from the reservoir to the wellbore. Proppants are mixed with the fracturing fluids and injected downhole into the formation (Fig. 2).

Today, proppant materials can be grouped into three main categories: rounded silica sand, resin coated sands, sintered or fused synthetic ceramic materials (Fig. 3). The most common used base materials are sand, ceramic, and sintered bauxite. Calculations about the proppants performance into the formation injected also improve to the well stimulation operation; to quantify proppant performance, specific quality-control procedures have been elaborated in past 30 years by the American Petroleum Institute[1] (API) and the International Standards Organization (ISO). Proppant selection, which includes the proppant type, size and shape, is a very critical element in stimulation design. Proppants have to withstand high temperatures, pressures, and the corrosive environment present in the formation. If the proppant fails to withstand the closure stresses of the formation, it disintegrates, producing fines or fragments which reduce the permeability of the propped fracture.

Availability and cost are the most desirable attributes of proppants, but also physical qualities of both natural (e.g. sand grains) and man-made, or artificially engineered, (such as resin-coated sand and ceramic) proppants are crucial.  The structural properties of proppants, both natural and manmade are gauged following specific criteria: 

  • Conductivity: the amount of flow that the proppant will allow.
  • Acid Solubility: tests of solubility in acid can indicate contaminants and determine how the proppant is likely to perform underground.
  • Shape: the degree to which a proppant grain is round or spherical determines how it will react to fracking fluids and produce oil or gas.
  • Crush resistance: proppant grain ability to withstand the stress of high bottom-hole pressures.
  • Solubility: the inability for the proppant to dissolve within a substance.
  • Turbidity: the absence of impurities such as clay, silt, etc. within the proppant material.

History and recent advancements in proppant technologies (-)

The first experimental use of hydraulic fracturing took place in with the use of about 20,000 pounds (9.1 metric tons) of river sand. The fracturing treatments followed used construction sand sieved through a window screen. There have been a number of trends in sand size - from very large to small - but since the beginning a &#;20/+40 US-standard-mesh[2] sand has been the most popular. Currently, approximately of the 85% of the sand used match this size.

Since then, the process of stimulating and fracturing wells has continually evolved as have the materials and technologies employed to do likewise. In addition to naturally occurring sand grains and walnut hulls, in past 70 years, especially after the s Texas boom, several proppant materials were carefully sorted for size, shape, weight (e.g. ultra-lightweight) and mechanical characteristics (e.g. multifunctional). Numerous propping agents have been evaluated throughout the s and the s, including resin-coated sands, plastic pellets, rounded, Indian glass beads, ashes and steel shot (Fig. 4). Since the s were developed and commercialized aluminum pellets, high strength glass beads, sintered bauxite, and fused zirconium.

Experimentation and new fracking techniques led to great steps forward in proppant studies, peaking in innovative breakthroughs achieved in the s. The manmade proppants provided unique capabilities that natural proppants could not: scientists and manufacturers have developed proppants that can be engineered to mitigate or withstand many of the physical and environmental conditions existing in deep in fractured zones. The new age of proppants - still in combination with traditional proppants - allowed resource developers to match up with conditions and characteristics of their target rock formations with more effectiveness. By adjusting proppant properties such as size, geometry, and weight, the optimal channel for unconventional hydrocarbons production flows can be obtained in different kinds of rocks.

Sand Proppants

Sands have remained, for decades, the most used proppant agent for hydraulic fracturing, mainly due to their low cost and easiness to handle. Fracking sands are extracted from silica sand deposits or riverbeds, then crushed, washed, dried and (but not always) sized. These are mechanical processes and no special (expensive) chemical action is needed. Two types of sand proppants are chiefly in use since the beginning of the practice: white quartz sand (light colored because the few impurities), and brandy brown quartz sand (first experimented in ) with low percentage of silica and high impurity content, which makes it more prone to crushing at lower stress.

The rate of concentration of sands in the drilling fluids (lbm/fluid gal)[3] remained low until the mid-s, when viscous fluids such as crosslinked water-based gel and viscous refined petroleum were introduced. Large-size propping agents were advocated then. The trend then changed from the monolayer or partial monolayer concept to pumping higher sand concentrations. Since that time, the concentration has increased almost continuously, with a sharp increase in recent years. These high sand concentrations are due largely to advances (pression and velocity) in pumping equipment and improved fracturing fluids. For example, today it is not uncommon to use proppant concentrations averaging 5 to 8 lbm/gal throughout the treatment, with a low concentration at the start of the job, increased to 20 lbm/gal toward the end of the job.

Lightweight proppants

The specific gravity[4] (s.g.) of sands has an average value of 2.65; the manufactured ceramic proppants have s.g. around 3.9. Both are heavier than the water (s.g. of 1.0) or brine solutions (s.g. of about 1.2) which are typical base fluids used to carry the proppant to the formation. There are three major trade-offs in using lightweight proppant with high density proppants:

  1. smaller fracture volume for a fixed weight of proppants
  2. higher costs
  3. faster settling rate in the carrier fluids.

To prevent the settling factor are used high viscosity fracturing fluids to keep the proppant material suspended in order to allow it to penetrate more deeply into the fractures. Ultra-lightweight proppant is preferred in some applications since it reduces proppant settling, requires low fluid viscosity to transport and allows for increased propped length. They can also be more useful in situations where high pump rates or carrier fluids with low viscosities are needed. Several techniques have been used to reduce specific gravity of the proppant. The S.G for lightweight proppant ranges from 0.8 to 2.59.

To make lightweight proppant were selected proppant material which has a lower specific gravity. Walnut shells, pits and husks were the earlier types of lightweight proppant used in the field. Even though such materials would penetrate deeper into the formation, their low structural strength limits their applicability to formations with relatively low closure pressures. Additionally, small particle fragments resulting from crushing of such materials reduce the conductive space available for fluid flow by reducing the fracture network.

Resin coated proppants

Since fracking sand is easily friable and creates fines when it is over-stressed, resin coated sand was developed to enhance the conductivity of sand. Resin-coated sands (RCS&#;s) have been a mainstay of stimulation treatments for more than 40 years.  The longevity of RCS&#;s is primarily due to its ability to form a pack within fractures thus preventing proppants from flowing back into the wellbore during fracking and production.  It&#;s also stronger than sand and often the choice when compressive strength is needed to prevent crushing in areas of extreme pressure at depth. The main disadvantage of the resin coating is that since the coating material is made of polymers, they tend to have low softening temperatures or low degradation temperatures compared to inorganic materials.

Coating technologies have been applied later to glass beads and ceramic proppants as well. All these proppants belong to resin coated proppant (RCP) category and can also be used as a way to prevent sand production in areas of soft formations where sand control is needed.

Proppants are either pre-coated with resin in a production facility and taken to location (precured) or coated (curable) at the well site by liquid resin coating systems (LRC). The performance of the proppant depends on the properties of the cured resin material. The most commonly used resins used to coat proppants are epoxy resins,[5] furan,[6] polyesters, vinyl esters, and polyurethane. Epoxy resin is the main one used for proppant coating, mainly because it has very good mechanical strength, heat resistance and chemical resistance. Furan has great resistance to heat and water, but it does not provide high mechanical strength. Polyurethane provides also great mechanical strength, good heat resistance and chemical resistance, but just when the application temperature is below 250 F.

The chemical crosslinks that form during the cure of the resin materials do not allow the cured material to melt or flow when re-heated. However, cured/crosslinked resins do undergo a very slight softening at elevated temperatures at a point known as the Glass Transition Temperature[7] (Tg). When the temperature is above the Tg, the mobility of the polymer chains increases significantly and the cured resin changes from a rigid/glassy state to more of a rubbery/compliant state. In this case, the resin system becomes soft and the strength decreases. So Tg has been used as a valuable parameter to determine performance limit of resins.

Ceramic Proppants

Sands showed to be not capable to withstand high closure stresses (up to psi). That gap got solved with the development of higher strength ceramic proppants manufactured since the early s from sintered bauxite, kaolin, magnesium silicate, or blends of bauxite and kaolin. Compared to sands, the synthetic ceramic proppants have higher strength and is more crush resistant especially where closure stresses exceed to 10,000 psi. They are more uniform in size and shape and has higher sphericity and roundness to yield higher porosity and permeability of the proppant bed. Furthermore, ceramic proppants have a remarkable chemical and thermal stability, which is functional to reduce the diagenesis effect. Ceramic proppants were since the beginning an engineered product featured by a more complex manufacturing. Since , lightweight ceramics (LWC) were developed. Few year later followed the intermediate density ceramics (IDC) and high density ceramics (HDC) (Fig. 5).

The alumina content of ceramic proppants correlates well with the pellet strength and the proppant density. The approximate correlation between alumina content and strength is true provided the proppant grains are of high quality and manufactured in a manner which minimizes internal porosity. LWC typically contains 45e50% alumina; IDC contains 70e75% alumina; HDC contains 80e85% alumina. However, in it was first coupled a raw material that is very high in alumina content with a new manufacturing process that creates extremely spherical, mono-sized, fully densified particles. Such proppants are referred to as ultra-high-strength proppant (UHSP) can be rated up to 20,000 psi in crushing strength.

Multifunctional proppants

Multifunctional proppants may be used to detect hydraulic fracture geometry or as matrices to slowly release downhole chemical additives, besides their basic function of maintaining conductive fracture during well production. Multifunctional proppants such as traceable proppants and contaminant removal proppants (filled or costed with chemical additives) have been used to prolong the well performance.

Traceable proppants answered to the need of obtaining detailed information about the stimulation treatment, such as location and geometry of created hydraulic fractures. It is also important to determine if the hydraulic fracture has extended to unwanted zones such as water zones. Nuclear logs are one of the common ways used to trace the extent of the induced fracture detection and it involves the use of radioactive materials (tracers) that can be detected by gamma ray logging tools. The radioactive tracers can be made by coating sand with radioactive materials, mixing with pulverized natural radioactive materials, impregnating radioactive ion exchange resins or ground plastic into proppants. When mixed with regular proppant during the fracturing process, these radioactive materials will emit gamma rays. Then gamma ray detectors, which have been in use in the oil & gas industry since early 's, are used to log after the hydraulic fracturing process. The gamma rays from the radioactive tracers are detected, recorded, and analyzed either in real time during wireline logging run, or recorded into memory and processed later after the tracers are retrieved. This technique is typically very effective and can be used to trace signals from multiple tracers.

Hexion Inc.[8] in has patented (applied in ) an advanced technique which involves non-activated radiation-susceptible materials capable of being activated by a neutron source. These materials can be incorporated into the resin coating of the proppant or into the composite composition of the proppants to be pumped downhole the same way as the radioactive tracers. Then a logging tool which contains a pulsed or continuous neutron source and gamma ray detector is moved past the intervals containing the traceable proppant. The gamma rays emitted from the neutron activated tracers are then detected by the sensor in the tool when it passes through a zone containing the activated material. The advantage of this technique is that it resolves the concerns of the handling, transportation, storage, and environmental concerns of handling a radioactive material.

In it was reported a technique which can detect the fracture geometry without using radioactive elements. This is accomplished by incorporating a high thermal neutron capture compound (HTNCC) at low concentrations into each ceramic proppant grain during manufacturing process. The HTNCC-containing proppant can be pumped downhole and into the induced fractures. Because these high thermal neutron capture compounds absorb neutrons, changes to neutron levels can be detected using conventional compensated neutron logs (CNL) or pulsed neutron capture (PNC) tools. The proppant containing zone is scanned using after-frac compensated neutron logs and the results are compared with the corresponding before-frac logs. The location of the detectable proppants was determined from analysis of before-frac and after-frac compensated neutron logs. This technological advancement will most probably expand the portfolio of tracers, at the same time diminishing the downsides of using radioactive agents.

The concept of using proppant grains to filter, clean, or remove possible contaminants from a production well have also been developed in early s: those were called contaminant removal proppants. Depending on the nature of the contaminants, they can be removed by any chemical, physical, or biological ways. This can be achieved by incorporating chemical contaminant removal component either coated onto the proppant grains or filled in the pores of porous proppants (Fig. 6).

Non-spherical proppants

Traditionally, the ideal proppant shape has been conceived spherical or nearly spherical and non-angular: spherical proppants with narrow size distribution provide fractures with the highest conductivity. A lower Krumbein[9] number indicates a more angular proppant (Fig. 7). Angular and pointed proppant particles tend to break off points, which lead to lower conductivity at higher closure stress. Ceramic proppant and resin-coated ceramic proppants require an average sphericity of 0.7 or greater and an average roundness of 0.7 or greater. All other proppants shall have an average sphericity of 0.6 or greater and an average roundness of 0.6 or greater.

Between and , different shapes of proppants - elongated and rod-shaped - other than conventional spherical shape have been produced (Fig. 8). They present higher conductivity factor due to the higher porosity in the packing. A series of laboratory observation held in late s noted the untapped pack porosity both for spherical and rod-shaped proppants. The conductivity results, 37% spherical vs. 48% rod-shaped demonstrated the benefit of the latter. The variation in rod length and diameter can increase the risks of placement, impact conductivity and affect proppant flowback performance.

In was investigated a different shaped high-drag ceramic proppant based on the relationship that increasing the drag force of the proppant particles will reduce the proppant settling velocity. It was designed and optimized in a way that center of gravity and centroid of volume do not align in a stable manner, so the proppant particles tumble and flutter when settling in a fluid: this design results into a slower settling time compared to conventional spherical sand proppant.

Conclusions

Developing unconventional petroleum and gas plays is very cost-sensitive, especially when using proppants with advanced characteristics. With the development of deeper reservoirs and more complex fracture geometry and formation properties, the performance requirements for proppants have become very demanding (Fig. 9).

The company is the world’s best ceramic frac proppant factories supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

See also

References

Acharya, A R. Tue . "Viscoelasticity of crosslinked fracturing fluids and proppant transport". SPE (Society of Petroleum Engineers) Product. Eng.; (United States). Journal Volume: 3:4

Alkhasov, Solomon. . Commercializing A Resin-Coated Proppant. Case Western Reserve University. Master of Science Thesis.

Campos, V. P. P. de, Sansone, E. C., & Silva, G. F. B. L. e. . &#;Hydraulic fracturing proppants&#;. Cerâmica, 64 (370), 219-229.

Gallagher, David. . &#;Hierarchy of Oily Conductivity&#;. Journal of Petroleum Technology 63 (4): 18-20.

Liang, Feng, Sayed, Mohammed, Al-Muntasheri, Ghaithan A., Frank F., Chang, Li, Leiming . &#;A comprehensive review on proppant technologies&#;. Petroleum 2: 26-39

Gallegos, Tanya J., Varela Brian A. . Trends in Hydraulic Fracturing Distributions and Treatment Fluids, Additives, Proppants, and Water Volumes Applied to Wells Drilled in the United States from through &#;Data Analysis and Comparison to the Literature. Scientific Investigations Report &#;. Reston, Virginia: U.S. Geological Survey.

Gidley, John L., Society of Petroleum Engineers. . Recent Advances in Hydraulic Fracturing. 12th ed. Richardson, TX: Society of Petroleum Engineers.

Gurley, D G, Copeland, C T. . Method for forming a consolidated gravel pack in a subterranean formation. United States Patent Number: US . Assignee: Dow Chemical Co.

Halliburton Services. . The FracbookTM Design/Data Manual for Hydraulic Fracturing. Duncan, OK: Halliburton.

Jacobs, James A., and Stephen M. Testa. . Development of Unconventional Oil and Gas Resources: Horizontal Drilling and Hydraulic Fracture Stimulation Techniques. Newark: John Wiley & Sons, Incorporated.

R.R. McDaniel, S.M. McCarthy, M. Smith. . Methods and Compositions for Determination of Fracture Geometry in Subterranean Formations. U.S. Patent No. 7,726,397 B2.

Olsen, T.N., Bratton, T.R., Thiercelin, M.J.: &#;Quantifying Proppant Transport for Complex Fractures in Unconventional Formations,&#; Paper SPE , presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, 19-21 January.

Page, J.C., Miskimins, J.L.: &#;A Comparison of Hydraulic and Propellant Fracture Propagation in Shale Gas Reservoir,&#; 09-05-26, J. Can. Pet. Tech., Vol 48, No. 5, May .

Zendehboudi, Sohrab and Bahadori, Alireza (eds). . &#;Exploration and Drilling in Shale Gas and Oil Reserves&#;. Shale Oil and Gas Handbook. Gulf Professional Publishing: 81-121.

Further Reading

A comprehensive review of ultralow-weight proppant ...

A fracturing proppant whose bulk density is less than 1.5 g/cm3 and apparent density is approximately 2.5 g/cm3 can be regarded as a ULW fracturing proppant (Wu ). On the one hand, it can reduce the amount of guar gum used in the fracturing fluid, which reduces the damage to a reservoir (Cheng and Li ); on the other hand, it can reduce the energy loss during the fracturing process and thus form a high-conductivity fracturing crack (Gao et al. ; Li ). Proppants with ultralow density, high closure pressure, and good heat resistance are urgently needed in the process of unconventional oil and gas resource exploitation. The ULW proppants reported in the literature (Table 1) is mainly divided into three categories in accordance with raw materials, including ULW-1 (organic polymer), ULW-2 (impregnation of nutshells, coated), and ULW-3 (porous ceramsite coated with resin). Each type of proppant has its own advantages and disadvantages. They have been widely used in different conditions depending on geology, availability, prices, and government regulations. The following is a basic introduction to each proppant type.

Table 1 ULW proppant statistics

Full size table

2.1

Basic properties of ULW proppants

ULW-1 (Brannon et al. ; Brannon and Starks ) is a heat-treated nanopolymer microsphere with an apparent density of 1.05 g/cm3, a glass transition temperature of approximately 145 °C, a closure pressure of 45 MPa, and a size of 14/40 mesh and 40&#;80 mesh (Fig. 3). The acid solubility rate is less than 2%, and the sphericity is greater than 0.9. The disadvantage of ULW-1 is that it is prone to deformation compared with traditional fracturing proppants. Zhang used graphite, fly ash, and reinforcing carbon black to polymerize with polystyrene to form a nanocomposite ULW polymer microsphere (Zhang et al. ). The glass transition temperature reached above 250 °C, and the crush resistance was less than 2% at 52 MPa. Parker et al. also developed a new ULW proppant from thermoplastic aluminum alloys with stable chemical properties (Parker et al. ). However, it can only be applied to a reservoir with low closure pressure (approximately 7 MPa) because of the strength limit. The density of this proppant is approximately 1.05&#;1.08 g/cm3.

ULW-2 (Bestaoui-Spurr and Hudson ; Han et al. ; Parker et al. ) is a highly angular particle (such as husks and walnut shells), which yields a high permeability at low closure stresses, and no fines are produced as stress increases (Fig. 4). The raw material is necessary to impregnate or wrap with resin to improve the closure stresses. The ULW-2 proppant has an apparent density of 1.25 g/cm3. It can withstand closure stress of 42 MPa at 79 °C and 28 MPa at 146 °C.

Fig. 4

Photograph showing the angularity of a 1.25 specific gravity ULW proppant (Rickards et al. )

Full size image

ULW-3 (Coker and Mack ; Jardim Neto et al. b; Rickards et al. ) is a porous particle, such as hollow glass microspheres and hollow spheres. It has the same surface roughness as conventional ceramic proppants, as shown in Fig. 5. This type of proppant has an average porosity of approximately 50% and can form a ULW proppant with a stereoscopic density of approximately 1.75 g/cm3. The closing stress of 56 MPa can be tolerated at 121 °C. Nonetheless, this proppant type exhibits a tendency to produce fine particles, leading to the plugging of pores.

Fig. 5

Picture showing the sphericity of ULW-3 (Jardim Neto et al. b)

Full size image

Table 2 compares the bulk density, bulk porosity, and sphericity of the above three proppants. ULW-3 is the heaviest proppant, whereas ULW-1 is the lightest. As shown in Fig. 6, ULW-1 is basically spherical, ULW-2 is polygonal, and ULW-3 is intermediately rounded. The porosity of packing with ULW-1 is the highest among the three types of proppants. Figure 7 shows particle size distribution of the three proppants. It can be seen that ULW-2 has a wide particle size distribution and a poor uniformity coefficient, and the two other distributions are relatively concentrated.

Table 2 Basic performance (Gaurav et al. ; Gu et al. )

Full size table

Fig. 6

Two-dimensional close-up images of ULW with a magnification of 23×&#;(Gaurav et al. )

Full size image

Fig. 7

Sieve size distribution of ULW proppants (Gaurav et al. )

Full size image

2.2

Settling speed of ULW proppants

The results of different types of proppant settlement experiments are shown in Fig. 8. The proppant type varied, and slick water with a relative density of 1.0 and a viscosity of 1&#;3 cps was used as the fracturing fluid. The relative viscosity of the fracturing fluid can be set to fixed values. From Fig. 8, the settling speed of 20/40 traditional quartz sand and ceramsite reaches or exceeds 16.5 ft/min. The settling speed of 40/80 mesh coated lightweight ceramic (LWC) proppant is 8 ft/min, whereas the settling speed of 40/100 ULW proppant is 0.08 ft/min. Under the same conditions, the settling speed of the ULW proppant is much lower than those of quartz sand and ceramsite (Brannon and Starks ).

Fig. 8

Settling rate for proppant types and size (Brannon and Starks )

Full size image

2.3

Strength and conductivity of ULW proppants

Proppant crushing experiments were conducted at 25 °C and 95 °C under the pressure of 103 MPa, and the stress was continuously loaded for 2 min. Individual particle strengths were also tested at 90 °C (Gaurav et al. ; Gu et al. ). The fine particle content was further analyzed after the test was completed. As shown in Table 3, the experimental results show that ULW-1 and ULW-2 produced only a small number of fine particles, while ULW-3 produced relatively more fine particles. In addition, the single-particle strength test shows that ULW-1 is shaped and easily deformed, and the difference among particles is large; ULW-3 is brittle, and a single particle has the lowest damage point. The strength characteristics of ULW-2 are in between those of ULW-1 and ULW-3.

Table 3 Percent of fines formed and average value of Young&#;s modulus for proppant packs (Gaurav et al. )

Full size table

Figure 9 shows that the conductivity of 0.02 lb/ft2 ULW-1.05 proppants at psi closure is 3 times greater than that of 1.0 lb/ft2 pack of sand. However, the three types of proppants have opposite changes in displacement efficiency. Figure 10 illustrates the simulation result of displacement efficiency of different proppants. The sand distribution is highly nonuniform, while ULW proppants approach the upper areas as they move further from the wellbore into the reservoir. Among the ULW proppants, ULW-1 generates a proppant bed with the lowest conductivity, but it exhibits the best proppant placement efficiency, i.e., the largest propped area with a uniform conductivity; ULW-3 builds a proppant bed with the highest conductivity, but the bed length is shorter and smaller than that of ULW-1. In short, the use of ULW proppant can obtain a large effective fracture support area, improve the production degree and conductivity of the reservoir, especially the tight reservoir with serious vertical heterogeneity, and enhance the effect of increasing production.

Fig. 9

Proppant conductivity vs. closure stress (Brannon and Starks )

Full size image

Fig. 10

Conductivity distributions for different proppants in 0.1 µD shale (Gu et al. )

Full size image

2.4

Propped fracture area and increased production effect of ULW proppants

Compared with the application of conventional proppants, the application of 40/80 mesh ULW proppants combined with slick water provides better proppant transport capacity, conductivity, and borehole performance. Table 4 compares the fracturing effects of conventional and ULW proppants. The simulation results show that the effective fracture area and productivity of fractures in wells with ULW fracturing are significantly higher than those of ordinary proppants. Although the unit price of ULW proppant is high, the ULW technology can achieve full fracture support and high conductivity by using low sand paving concentration. Therefore, the overall cost of fracturing operations has not changed much (Brannon and Starks ).

Table 4 Summary of effective fracture area, conductivity, and 360-day cumulative production forecast

Full size table

If you want to learn more, please visit our website sourcing frac proppant manufacturer.